GLY 4200
Name \qquad
Homework Exercise 6

Binary Phase Diagrams - Eutectic Behavior

1. On the attached diagram, outline each liquidus line in green, each solidus line in brown.
2. Label the diagram with point $\mathrm{A}, 80 \mathrm{wt} . \%^{\mathrm{Cd}}$ at $350^{\circ} \mathrm{C}$, trace the cooling behavior of the melt down to $0^{\circ} \mathrm{C}$. Show the path followed by the liquid in red, the path followed by the solid in blue. Then answer the following questions for:

2A: a) At what temperature does the first crystal appear? \qquad $282^{\circ} \mathrm{C}$
b) What is the composition of the first crystal? \qquad 100% Cd
c) At what temperature does the first crystal of Bi appear? $144^{\circ} \mathrm{C}$
d) At what temperature does the liquid disappear? \qquad
e) What is the composition of the final liquid phase? $40 \% \mathrm{Cd}, 60 \% \mathrm{Bi}$
f) What is the composition of the final solid mixture? (Phases present and percent of each) \qquad
3. Starting at point $\mathrm{B}, 20 \mathrm{wt} . \% \mathrm{Cd}$ at $0^{\circ} \mathrm{C}$, trace the behavior of the solid up to $350^{\circ} \mathrm{C}$. Indicate the paths followed by the solid and liquid as in question 2. Then answer the following questions:

3B a) At what temperature does the first liquid appear? \qquad $144^{\circ} \mathrm{C}$
b) What is the composition of the first liquid? $\quad 40 \% \mathrm{Cd}, 60 \% \mathrm{Bi}$
c) At what temperature does the Bi disappear? $204^{\circ} \mathrm{C}$
d) At what temperature does the last solid disappear? $204^{\circ} \mathrm{C}$
e) What is the composition of the final solid phase? $\quad 100 \% \mathrm{Bi}$
f) What is the composition of the final liquid phase? $\underline{20 \%} \mathrm{Cd}, 80 \% \mathrm{Bi}$

Grading - $\quad 1$ point for each colored line
1 point per blank $\pm 4^{\circ} \mathrm{C}$ and $\pm 1 \%$ composition

$$
\pm 8^{\circ} \mathrm{C} \text { and } \pm 2 \% \text { composition, }-1 / 2 \text { point }
$$

Total - 18 points
Iwpdocs\4200\HW2012\4200HW6_KEY_F12.wpd
November 9, 2012

Figure for problems 1-3

Note: The vertical temperature scale markings are $50^{\circ} \mathrm{C}$ per division, starting at $0^{\circ} \mathrm{C}$ at the bottom. Use the bottom scale (weight \% Cd) for the horizontal axis.

